
Tilemap editor
Use the Tilemap Editor to create maps that the tilemap library can load.

File menu

New

Create a new map from scratch, this clears everything.

Load

Load a map that you have previously saved. You can also load maps created with the n6 version of
the Tilemap Editor.

Save/Save as

Save the current map.

Exit

Close the program.

Map menu

Set size

Open a dialog where you can change the width and height of the map.

The width and height is specified in number of tiles.

Set tile size

Open a dialog where you can change the width and height of a tile.

The width and height is specified in pixels.

Clear

Clear the map but keep its size, tile size and image.

Load image

A map can only use one image. This image is assumed to contain cels in a uniform grid, where each
cel has the size set in the Set tile size dialog. Here is an example of such an image with the tile size
16x16:

Set color key

If the image loaded contains a color that is to be treated as transparent, you can enter the RGB
values of that color in the Set color key dialog:

Image cel selection

You select an image cel by clicking on it under the Image label.

After selecting an image cel, you can set it's collision type using the radio buttons under Collision
type.

Modes

There are two modes for editing the map. You can change the mode with the drop-down list next to
the Mode label:

Draw mode

If you select the Draw mode, you can draw on the map with your left mouse button using the
currently selected tile. The first image tile, the one with a red cross, is used for erasing.

Edit mode

When you select the Edit mode, you can select and edit a single tile of the map by clicking on it.

When you select a tile two input boxes appear in the bottom right corner of the window:

Here you can set a game flag and a loader flag for the selected map tile. You can use these flags for
anything you want.

After loading a map through the tilemap library using TM_LoadMap, you can get a list of all set
loader flags with TM_GetLoaderFlags. As an example, you can use loader flags to position the
player and enemies.

The game flag of a map tile can be accessed with the function TM_GetFlag. As an example, if your
map contains breakable blocks that may contain powerups, you can use game flags to decide what's
in a specific block (”coin”, ”mega gun” …).

If a game flag has been set for a tile, a blue dot will be displayed in its top left corner. And if a
loader flag has been set for a tile, a green dot will be displayed in its bottom right corner. If you
hold the mouse cursor over a tile, a tooltip appears, showing its coordinates and flags:

Tilemap library

Units and coordinate systems

A tilemap has a tile size, a map size and, what I call, a world size. The tile size is the size of a single
tile in pixels. The map size is the size of the map in tiles. And the world size is the size of the map
in pixels. In other words, the world width is the map width * the tile width, and the world height is
the map height * the tile height.

When I speak of map coordinates, the unit is tiles, and when I speak of world coordinates, the unit
is pixels.

Since a tilemap can be larger than the view (usually the window) a camera position, in world
coordinates, can be set to change what part of the map we're currently viewing. Therefor we also
have to make a difference between screen (view) coordinates and world coordinates.

Sprites

Some functions, such as TM_MoveSprite, take a ”sprite” as an argument. A sprite is defined as any
table where x, y, w and h represents its position in world coordinates and its width and height in
pixels. But you don't have to use these functions, since they have twins using images and world
coordinates as parameters.

Functions

(number) TM_LoadMap((string)filename)

Load map from the filename filename created with the Tilemap Editor and return true on success.

(number) TM_MapWidth()

Return the map width in tiles.

(number) TM_MapHeight()

Return the map height in tiles.

(number) TM_TileWidth()

Return the tile width.

(number) TM_TileHeight()

Return the tile height.

(number) TM_WorldWidth()

Return the map width in pixels.

(number) TM_WorldHeight()

Return the map height in pixels.

(array) TM_GetLoaderFlags()

Return all loader flags set for the map as an array of objects with the keys:

(string)flag

(number)x

(number)y

The position (x, y) is in map coordinates.

TM_SetBorder((number)leftBorder, (number)rightBorder, (number)topBorder,
(number)bottomBorder)

Decide how the map borders are to be treated. For example, if the left border is to be treated as a
wall, set leftBorder to true, otherwise false. By default, all borders are treated as walls.

(number) TM_GetImage()

Return the map image.

(number) TM_GetCel((number)mapX, (number)mapY)

Return the image cel of the map image at the map coordinates (mapX, mapY). -1 is returned if no
cel has been set for the position.

(number) TM_GetCelAt((number)worldX, (number)worldY)

Return the image cel of the map image at the world coordinates (worldX, worldY). -1 is returned if
no cel has been set for the position.

TM_SetCel((number)mapX, (number)mapY, (number)cel)

Set the image cel of the map image at the map coordinates (mapX, mapY) to cel (-1 to clear).

(string) TM_GetFlag((number)mapX, (number)mapY)

Return the game flag at the map coordinates (mapX, mapY). An unset variable is returned if no flag
has been set for the position.

(string) TM_GetFlagAt((number)worldX, (number)worldY)

Return the game flag at the world coordinates (worldX, worldY). An unset variable is returned if no

flag has been set for the position.

TM_SetFlag((number)mapX, (number)mapY, (string)flag)

Set the game flag at map coordinates (mapX, mapY) to flag (unset to clear).

(number) TM_Obstacle((number)cel)

Return true if the map image cel cel is an obstacle.

(number) TM_ObstacleAt((number)worldX, (number)worldY)

Return true if there is an obstacle at the world coordinates (worldX, worldY).

TM_SetView((number)screenX, (number)screenY, (number)w, (number)h)

Set the rendering area used by the TM_Render function to screen position (screenX, screenY) and
the width and height w and h. Most likely you will want to render the map over the entire window,
and call TM_SetView(0, 0, width(primary), height(primary) once you've created a window.

TM_SetCamera((number)worldX, (number)worldY)

Set the camera's top left position to the world coordinates (worldX, worldY).

TM_CenterCamera((number)worldX, (number)worldY)

Center the camera at the world coordinates (worldX, worldY).

(number) TM_CameraX()

Return the x world coordinate of the camera.

(number) TM_CameraY()

Return the y world coordinate of the camera.

(number) TM_ToScreenX((number)worldX)

Return the world x coordinate worldX converted to a screen x coordinate.

(number) TM_ToScreenY((number)worldY)

Return the world y coordinate worldY converted to a screen y coordinate.

(number) TM_ToWorldX((number)screenX)

Return the screen x coordinate screenX converted to a world x coordinate.

(number) TM_ToWorldY((number)screenY)

Return the screen y coordinate screenY converted to a world y coordinate.

(number) TM_ToMapX((number)worldX)

Return the world x coordinate worldX converted to a map x coordinate.

(number) TM_ToMapY((number)worldY)

Return the world y coordinate worldY converted to a map y coordinate.

(number) TM_SpriteVisible((table)sprite)

Return true if the sprite sprite would be visible if rendered.

(number) TM_Visible((number)img, (number)worldX, (number)worldY)

Return true if the image img at world coordinates (worldX, worldY) would be visible if rendered.

TM_Render()

Render the map.

TM_MoveSprite((table)sprite, (number)dx, (number)dy)

Move the sprite sprite with the x- and y-speed dx and dy with collision handling.

(table) TM_Move((number)img, (number)worldX, (number)worldY, (number)dx, (number)dy)

Move the image img, currently at position (worldX, worldY) with the x- and y-speed dx and dy with
collision handling. The new coordinates are returned as x and y in a table.

(number) TM_CollisionLeft()

Return true if the last call to TM_MoveSprite or TM_Move resulted in a leftward collision.

(number) TM_CollisionRight()

Return true if the last call to TM_MoveSprite or TM_Move resulted in a rightward collision.

(number) TM_CollisionUp()

Return true if the last call to TM_MoveSprite or TM_Move resulted in an upward collision.

(number) TM_CollisionDown()

Return true if the last call to TM_MoveSprite or TM_Move resulted in a downward collision.

(number) TM_SpritesCollide((table)sprite1, (table)sprite2)

Return true if the sprites sprite1 and sprite2 overlap.

(number) TM_ImagesCollide((number)img1, (number)x1, (number)y1, (number)img2,
(number)x2, (number)y2)

Return true if the images img1 and img2 at the positions (x1, y1) and (x2, y2) overlap.

Additional functions when not using the Tilemap Editor

TM_InitMap((number)w, (number)h)

Set the map width and height in tiles to w and h.

TM_SetImage((number)img)

Set the map image to img. The tile width and height of the map will be set to the tile width and
height of the image (set with set image grid).

TM_SetObstacle((number)cel, (number)value)

Make the cel cel of the map image an obstacle if value is true. By default, all cels are non-obstacles.

TM_SetOnlyDown((number)cel, (number)value)

Make the cel cel of the map image an obstacle that only allows collision downwards if value is true.
This may be useful in platform games where the user can jump through certain platforms from
below but stil land and walk on them.

	Tilemap editor
	File menu
	Map menu
	Image cel selection
	Modes

	Tilemap library
	Units and coordinate systems
	Sprites
	Functions
	Additional functions when not using the Tilemap Editor

