
Table of contents
1Introduction..2
2Program flow..3

2.1if, elseif, else, endif..3
2.2select, case, default, endsel..3
2.3do, loop...4
2.4do, until..4
2.5while, wend..4
2.6for, to, step, next...5
2.7foreach, in, next..5
2.8break...5

3Math..6
3.1Commands...6
3.2Functions..6

4Strings...8
4.1Functions..8

5Tables..9
5.1Commands...9
5.2Functions..9

6Date and time..10
6.1Commands...10
6.2Functions..10

7Files...11
7.1Commands..11
7.2Functions..11

8Window...12
8.1Commands...12
8.2Functions..13

9Images and drawing..14
9.1Commands...14
9.2Functions..16

10Text output, input and fonts..17
10.1Commands...17
10.2Functions..18

11Audio..19
11.1Commands..19
11.2Functions..20

12Functions..20
12.1Static definition..20
12.2Anonymous definition..21
12.3return..21
12.4this..22
12.5Global variables...22

13Key codes...23

1

1 Introduction
Earlier versions of naalaa was strongly typed and had no coersion at all. In n7, on the other hand,
variables may change type at any time, and implicit type conversions are made whenever needed.
The n7 value types are numbers and strings, and its reference types are tables (arrays) and functions.

N6:

foo = 7

bar# = 3.14

pickle$ = ”Hello”

wln bar + float(foo)

wln pickle + ”, ” + str(foo)

N7:

foo = 7

bar = 3.14

pickle = ”Hello”

wln bar + foo

wln pickle + ”, ” + foo

Output:

10.14

Hello, 7

Arrays have been replaced with tables in n7. A table consists of key and value pairs. The keys can
be numbers or strings, and the values can be numbers, strings, tables or functions. Migrating from
n6 arrays to n7 tables shouldn't be much of a problem:

N6:

foo[10]

for i = 0 to 9

 foo[i] = rnd(100)

next

N7:

foo = []

for i = 0 to 9

 foo[i] = rnd(100)

next

N7:

foo = dim(10)

for i = 0 to 9 foo[i] = rnd(100)

N7:

foo = []

for i = 0 to 9 foo[sizeof(foo)] = rnd(100)

2

2 Program flow

2.1 if, elseif, else, endif

if e
1

 <statements
1
>

[elseif e
2

 <statements
2
>

..

[elseif e
n

 <statements
n
>

] ..]

[else

 <statements
default

>

]

endif

If expression e
x
 evaluates to anything but 0, the statements statements

x
 are executed, whereafter a

jump is made to the first statement following endif. If all expressions, e
1
 .. e

n
, evaluates to 0 and else

is not omitted, the statements statements
default

 are executed.

2.2 select, case, default, endsel

select e

 case c
1,1

[, c
1,2

 ..

[, c

1,n
] ..]

 <statements
1
>

 [case c
2,1

[, c
2,2

 ..

[, c

2,n
] ..]

 <statements
2
>

 ..

 [case c
m,1

[, c
m,2

 ..

[, c

m,n
] ..]

 <statements
m
>

] ..]

3

 [default

 <statements
default

>

]

endsel

If expression e matches any of c
x,1

 .. c
x,n

, the statements statements
x
 are executed, whereafter a jump

is made to the first statement following endsel. If no match is found and default is not omitted, the
statements statements

default
 are executed.

2.3 do, loop

do

 <statements>

loop

Execute statements statements until break is called.

2.4 do, until

do

 <statements>

until e

Execute statements statements until expression e evaluates to anything but 0.

2.5 while, wend

while e

 <statements>

wend

Execute statements statements as long as expression e doesn't evaluate to 0.

4

2.6 for, to, step, next

for (variable)id = (number)startValue to (number)endValue [step (number)stepSize]

 <statements>

next

Before each iteration step, variable id is assigned a value, starting with startValue. When the
statements statements have been executed, |stepSize| or -|stepSize| is added to id, depending on if
endValue is higher or lower than startValue. A step size of 1 is used if stepSize is omitted. The
iteration stops when id > endValue if endValue > startValue, or when id < endValue if startValue >
endValue.

Note that startValue, endValue and the optional stepSize are evaluated only once – before the first
iteration step.

2.7 foreach, in, next

foreach [(variable)k,] (variable)v in (table)t

 <statements>

next

Execute statements statements once for every entry in table t. In each iteration step, v is assigned the
value of a table entry and, if not omitted, k is assigned the corresponding key. There is no
guaranteed order in which the table entries are visited, not even for arrays.

Note that the table is locked during a foreach loop, meaning that any attempt to free any of its
entries will cause a runtime error. You may add entries to the table, but such entries won't appear in
the current iteration.

2.8 break

break

Leave a do-, while-, for- or foreach-loop.

5

3 Math

3.1 Commands

randomize (number)seed

Set seed value used by the rnd function.

3.2 Functions

(number)min((number)x, (number)y)

Returns the lowest number of x and y.

(number)max((number)x, (number)y)

Returns the highest number of x and y.

(number)abs((number)x)

Returns the absolute value of x. The following syntax can also be used:

y = |x|

(number)floor((number)x)

Returns the highest integer value that is lower than or equal to x.

(number)ceil((number)x)

Returns the lowest integer value that is higher than or equal to x

(number)round((number)x)

Returns the integer value that is closest to x.

(number)pow((number)x, (number)y)

Returns xy. The following syntax can also be used:

z = x^y

(number)sqr((number)x)

Returns the square root of x.

6

(number)cos((number)i)

Returns the cosine of the angle a, expressed in radians.

(number)sin((number)a)

Returns the sine of the angle a, expressed in radians.

(number)tan((number)a)

Returns the tangent of the angle a, expressed in radians.

(number)acos((number)x)

Returns the arc cosine of x in radians.

(number)asin((number)x)

Returns the arc sine of x in radians.

(number)atan((number)x)

Returns the arc tangent of x in radians.

(number)atan2((number)y, (number)x)

Returns the arc tangent in radians of y/x.

(number)rad((number)a)

Returns a, an angle expressed in degrees, converted to radians.

(number)deg((number)a)

Returns a, an angle expressed in radians, converted to degrees.

(number)rnd()

Returns a random number in the range [0 .. 1].

(number)rnd((number)n)

Returns a random integer in the range [0 .. n - 1]

(number)rnd((number)minValue, (number)maxValue)

Returns a random integer in the range [minValue .. maxValue]

7

4 Strings

4.1 Functions

(number)len((string)s)

Returns the number of characters in s.

(string)lower((string)s)

Returns s converted to lowercase.

(string)upper((string)s)

Returns s converted to uppercase.

(string)left((string)s, (number)n)

Returns the n leftmost characters of s.

(string)right((string)s, (number)n)

Returns the opposite part of the string compared to left.

(string)mid((string)s, (number)n[, (number)m])

Returns m characters, starting at character index n, of s. If m is omitted, only one character is
returned.

(array)split((string)s, (string)sub)

Returns an array with all substrings of s split at every occurrence of sub (sub is excluded from the
resulting strings).

(number)instr((string)s, (string)sub[, (number)n])

Returns the character index in s of the first occurrence of sub. The search starts at character index n,
which is 0 if omitted. -1 is returned if no occurrence was found.

(string)replace((string)s, (string)sub, (string)rep[, (number)n])

Returns a string where all occurrences of sub in s are replaced with rep if n is omitted. If n is not
omitted, the search starts at the character index n and only the first occurrence is replaced.

8

(string)chr((number)c)

Returns the character represented by the ASCII code c.

(number)asc((string)s)

Returns the ASCII code of the first character in s.

5 Tables

5.1 Commands

free key (table)t, (string/number)k

Removes the entry with key k from table t if it exists. If the key is numeric, any sequent numeric
keys will be decreased.

free val (table)t, v

Removes every entry with v as value from table t. If entries with numeric keys are removed from a
sequence, any sequent keys will be re-indexed.

free v

Removes a variable v from its parent, which can be a table, program memory or a function's local
memory.

free foo.x

gives the same result as:

free foo, ”x”

No form of re-indexing occurs if you use free with a numeric index:

free foo[1]

clear (table)t

Clears table t.

5.2 Functions

(table)dim((number)size1[, (number)size2 .. [, (number)sizen] ..])

Returns an array with one or more dimensions of the specified sizes, size
1
 .. size

n
.

9

(table)fill(v, (number)size1[, (number)size2 .. [, (number)sizen] ..])

Returns an array with one or more dimensions of the specified sizes, size
1
 .. size

n
, with every

element set to a deep copy of v.

(number)sizeof((table)t)

Returns the number of elements in table t.

(table)copy((table)t)

Returns a deep copy of table t.

6 Date and time

6.1 Commands

wait (number)ms

Wait for ms milliseconds.

fwait (number)fps

Wait until atleast 1000/fps milliseconds have passed since the previous call to fwait. You can use
this at the end of a game loop to cap the number of frames per second to fps.

6.2 Functions

(number)clock()

Returns time in milliseconds since program execution started.

(number)time([(number)year[, (number)month[, (number)day[, (number)hour[, (number)minute[,
(number)second]]]]]])

Returns time in seconds since epoch for specified date and time. If all arguments are omitted, the
current date and time is used.

(table)datetime([(number)t])

Returns a table with information about the time t, specified in seconds since epoch. If t is omitted,
the current date and time is used. The fields of the table are:

year Ex: 2021

10

month 1..12, where 1 is January

day Day of month, [1..31]

hour [0..23]

minute [0..59]

second [0..59]

wday [1..7], where 1 is Monday

yday [1..365], where 1 is January 1

(number)fwait((number)fps)

Wait until atleast 1000/fps milliseconds have passed since the previous call to fwait and return 1 if
the function actually had to wait. In a game loop, you can use the return value to determine if you
should skip drawing during the next frame.

7 Files

7.1 Commands

open file (number)id, (string)filename

Open file filename for reading through identifier id.

create file (number)id, (string)filename

Create file filename for writing through identifier id.

free file (number)id

Close file id.

write file (number)id, (string)s

Write s to file id.

wln file (number)id, (string)s

Write s followed by a line break to file id.

7.2 Functions

11

(number)openfile((string)filename)

Same as the command open file but auto-generates and returns an identifier.

(number)createfile((string)filename)

Same as the command create file but auto-generates and returns an identifier.

(number)file((number)id)

Returns 1 if file id has been opened/created or 0 if it hasn't.

(string)fread((number)id)

Reads characters from file id until any form of whitespace or end of file is reached and returns the
characters as a string. If no characters could be read an unset variable is returned.

(string)frln((number)id)

Reads characters from file id until a new line or end of file is reached and returns the characters as a
string. If no characters could be read an unset variable is returned.

(number)freadc((number)id)

Reads a character from file id and returns is as a number (use chr to convert it to a string). If no
character could be read an unset variable is returned.

(string)openfiledialog([(string)extension])

Shows a system dialog for opening a file. Set the optional extension to a file extension (such as
”txt”) to only list files of that type. If the user selects a file, its full path is returned, else an empty
string is returned.

(string)savefiledialog([(string)extension])

Same as openfiledialog, but shows a system dialog for saving a file.

(number)exists((string)filename)

Returns 1 if a file with the name filename exists or 0 if it doesn't.

8 Window

8.1 Commands

12

set window (string)title, (number)w, (number)h[, (number)fullScreen[, (number)scaleFactor]]

Create a window window with the width w, height h and title title. If the optional fullScreen is
anything but 0, the window will be stretched to cover the entire screen. scaleFactor can be set to an
integer value higher than 1 to scale the window if fullScreen is 0.

 Note that multiple windows are not supported. If you call set window more than once, the
previous window will be replaced. Also, in earlier versions of naalaa, a default window was created
when the program started. But in n7, no window is created until you call set window. The program
is automatically terminated if the user closes the window.

set redraw (number)v

Disable automatic redraw if v is 0, else enable it.

 By default, the window content is updated every time you use a command that draws something,
such as wln or draw image. When this behavior is disabled, you manually have to call redraw to
update the window content.

redraw

Update the window content.

set mouse (number)value

Set mose cursor visibility to value, where 0 means invisible and anything else visible.

set mouse (number)x, (number)y

Set mouse position to (x, y).

8.2 Functions

(number)window((string)title)

Returns 1 if there is any running n7 program with the specified title.

(number)keydown((number)keyCode[, (number)unflag])

Returns 1 if key keyCode is being pressed. If the optional unflag is anything but 0, the function
won't return 1 for the key until it has been released and pressed again. See Key codes for a lists all
available key codes.

(number)inkey()

Returns the ASCII code of any printable character that was processed during the last wait call. The
input is queued, and the function returns 0 when the queue is empty. You can use inkey to
implement custom text input. For game controls, use keydown.

13

(number)mousex()

Returns the window x coordinate of the mouse cursor.

(number)mousey()

Returns the window y coordinate of the mouse cursor.

(number)mousebutton((number)button[, unflag])

Returns a non-zero number if mouse button button is being pressed. If the optional unflag is
anything but 0, the function will return 0 for the button until it has been released and pressed again.
The only valid button values are 0 for the left mouse button, 1 for the right button and 2 for the
mousewheel.

9 Images and drawing
Window and image coordinates are always specified from the top left corner.

9.1 Commands

set color (number)r, (number)g, (number)b[, (number)a]

Set color in RGBA format, where r, g, b and a are the red, green, blue and alpha intensities, all in
the range [0 .. 255]. If omitted, a is assumed to be 255. This affects all future draw commands.

set color (table)c

Set color from an array c, [r, g, b] or [r, g, b, a], where r, g, b and a are the red, green, blue and alpha
intensities in the range [0 .. 255]. If the array only has three elements, 255 is used for alpha.

set additive (number)value

Turn additive draw mode on if value is anything but 0, else off.

set clip rect (number)x, (number)y, (number)w, (number)h

Set the top left corner of the clipping rectangle to (x, y) and its width and height to w, h. This affects
all future draw commands.

clear clip rect

Restore the clipping rectangle to the entire area of the destination image (usually the window's back
buffer).

14

cls

Clear the window content.

draw pixel (number)x, (number)y

Draw a pixel at position (x, y).

set pixel (number)x, (number)y

Set the pixel at position (x, y). The difference between set pixel and draw pixel is that set pixel
SETS the alpha component of the pixel, while draw pixel uses the alpha for blending.

draw line (number)x1, (number)y1, (number)x2, (number)y2

Draw a line between (x1, y1) and (x2, y2).

draw rect (number)x, (number)y, (number)w, (number)h[, (number)fill]

Draw a rectangle with its top left corner at (x, y) and the width and height w, h. If fill is set to
anything but 0 (default), the rectangle is filled.

draw ellipse (number)x, (number)y, (number)rx, (number)ry[, (number)fill]

Draw an ellipse with its center at (x, y) and x and y radiuses rx and ry. If fill is set to anything but 0
(default), the ellipse is filled.

draw polygon (array)points[, (number)fill[, (number)pointCount]]

Draw a polygon based on the coordinates stored in the array points, with the format [x0, y0, x1, y1 ..
x

n
, y

n
]. If fill is set to anything but 0 (default), the polygon is filled. Use the optional pointCount if

you want to draw a polygon based on only the first pointCount coordinate pairs in the array.

load image (number)id, (string)filename[, (number)cols, (number)rows]

Load image id from file filename. Optionally divides the image into cols columns and rows rows
(see set image grid).

set image grid (number)id, (number)cols, (number)rows

Divide the image id into cols columns and rows rows. This doesn't change the image in any way,
but allows you to use a special version of draw image to draw a specific cell of the grid. The cells
are indexed from left to right and top to bottom starting with 0.

set image grid myImage, 4, 2

, would divide an image into the cells:

15

set image colorkey (number)id, (number)r, (number)g, (number)b

Make color r, g, b completely transparent in image id.

create image (number)id, (number)w, (number)h

Create image id and set its width and height to w and h.

free image id

Remove the image id from memory. All images are automatically freed when the program ends.

set image (number)id

Set the destination image for all draw commands (including text output) to id. Use the constant
primary as id to direct drawing back to the window.

draw image (number)id, (number)x, (number)y

Draw image id at position (x, y).

draw image (number)id, (number)x, (number)y, (number)c

Draw cell (see set image grid) c of image id at position (x, y).

draw image (number)id, (number)x, (number)y, (number)srcX, (number)srcX, (number)w,
(number)h

Draw a rectangular part of image id, defined by the position (srcX, srcY) and the width and height w
and h, at position (x, y).

draw vraster (number)id, (number)x, (number)y1, (number)y2, (number)u1, (number)v1,
(number)u2, (number)v2

Draw a vertical line from (x, y1) to (x, y2) using image id as texture. The texture coordinates (u1,
v1, u2 and v2) should be in the range [0..1].

The current drawing color (set with set color) affects draw vraster and draw hraster (below)
differently than the other drawing commands. The RGBA color is applied as a ”fog” effect, where
an alpha value of 0 means no fog (texture is drawn with its original color) and 255 means full fog
(texture color is completely replaced with fog color).

16

draw hraster (number)id, (number)y, (number)x1, (number)x2, (number)u1, (number)v1,
(number)u2, (number)v2

Draw a horizontal line from (x1, y) to (x2, y) using image id as texture. The texture coordinates (u1,
v1, u2 and v2) should be in the range [0..1].

9.2 Functions

(number)loadimage(filename[, (number)cols, (number)rows)

Same as the command load image but auto-generates and returns an identifier.

(number)createimage((number)w, (number)h)

Same as the command create image but auto-generates and returns an identifier.

(number)image((number)id)

Returns 1 if the image id exists (has been loaded or created) or 0 if it doesn't.

(number)width([(number)id])

Returns the width, or cell width if an image grid has been set up, of image id or the destination
image if id is omitted .

(number)height([(number)id])

Returns the height, or cell height if an image grid has been set up, of image id or the destination
image if id is omitted.

(array)pixel((number)x, (number)y)

Returns the color at position (x, y) as an array [r, g, b, a] with RGBA intensities in the range [0 ..
255].

10 Text output, input and fonts
You can only use fonts, caret positioning and text justification when writing text to a window with
the commands wln, write and center. If you use wln or write without having created a window, the
output will be directed to the console. When a window has been created you can still output text to
the console with pln (useful for debugging).

10.1 Commands

17

pln (string)s

Write string s to the console and move to a new line.

set caret (number)x, (number)y

Set position of text output/input to (x, y). The actual caret is only visible during text input with the
rln function.

set justification left/right/center/(number)v

Set justification of text output/input to left, right or centered either using the keywords left, right
and center or a value v, where 0 represents centered, any negative number is left and any positive
number right.

wln (string)s

Write string s and move to a new line.

write (string)s

Write string s without moving to a new line.

center (string)s

Write string s centered and move to a new line (same as calling wln after set justification center).

create font (number)id, (string)name, (number)size[, (number)bold[, (number)italic[,
(number)underline[, (number)smooth]]]]

Create a bitmap font with the identifier id from a system font named name (ex. ”arial”). Use size to
set the font's height in pixels. If bold, italic and/or underline is anything but 0 the font will be bold,
italic and/or underlined. If smooth is anything but 0, an antialiasing filter is applied to the created
bitmap font.

save font (number)id, (string)filename

Save created/loaded bitmap font id as filename.txt and filename.png.

load font (number)id, (string)filename

Load bitmap font id from filename.txt and filename.png.

set font (number)id

Set font used by wln, write, center and rln to id.

18

10.2 Functions

(string/number) rln([maxChars[, (number)type]])

Waits for and returns keyboard input from the user. If maxChars is higher than 0, the number of
characters is limited to its value. If type is set to TYPE_NUMBER, only numeric input is allowed
and a number is returned. By default maxChars is 0 (unlimited number of characters) and type is
TYPE_STRING. Currently, the only valid type values are TYPE_NUMBER and TYPE_STRING.

 If no window has been created, input is read from the console. In this case maxChars has no
effect.

(number)createfont((string)name, (number)size[, (number)bold[, (number)italic[,
(number)underline[, (number)smooth]]]])

Same as the command create font but auto-generates and returns an identifier.

(number)loadfont((string)filename)

Same as the command load font but auto-generates and returns an identifier.

(number)font((number)id)

Returns 1 if font id exists (has been created or loaded) or 0 if it doesn't.

(number)fwidth([(number)id,] (string)s)

Returns the width of string s if printed with font id or the currently used font if id is omitted.

(number)fheight([(number)id])

Returns the height of font id or the currently used font if id is omitted.

11 Zones
Zones can be used for button logic.

11.1 Commands

create zone (number)id, (number)x, (number)y, (number)w, (number)h

Create zone id and set its position to (x, y) and its width and height to w and h.

free zone (number)id

19

Free zone id. All images are automatically freed when the program ends.

11.2 Functions

(number)createzone((number)x, (number)y, (number)w, (number)h)

Same as the command create zone but auto-generates and returns an identifier.

(number)zone()

Returns the id of the last zone that had a valid click. Each click is returned only once.

(number)zone((number)id)

Returns the status of zone id. These are the different status values:

0 The mouse cursor is not over the zone

1 The mouse cursor is over the zone but the left mouse button is not pressed

2 The mouse cursor is over the zone and the left mouse button is pressed

Note that if a click has been initiated for a zone (mouse button down while being over it), no other
zone will have status 1 until the mouse button has been released. This is simply how buttons usually
work.

(number)zone((number)x, (number)y)

Returns the id of a zone at the position (x, y).

(number)zonex((number)id)

Returns the x coordinate of zone id.

(number)zoney((number)id)

Returns the y coordinate of zone id.

(number)zonew((number)id)

Returns the width of zone id.

(number)zoneh((number)id)

Returns the height of zone id.

20

12 Audio

Currently only wav files in PCM format are supported for sound and music.

12.1 Commands

load sound (number)id, (string)filename

Load sound id from file filename.

free sound (number)id

Remove the sound id from memory. All sounds are automatically freed when the program ends.

play sound (number)id[, (number)volume[, (number)panning]]

Play sound id with volume volume, [0..1], and panning panning, [-1..1], where -1 is left and 1 is
right. The default values for volume and panning are 1 and 0.5.

load music (number)id, (string)filename

Load music id from file filename.

free music (number)id

Remove the music id from memory. All music is automatically freed when the program ends.

play music (number)id[, (number)loop]

Play music id. If loop is not omitted and set to anything but 0, the music will loop.

stop music (number)id

Stop playing music id.

set music volume (number)id, (number)volume

Set the volume of music id to volume, [0..1]. The default volume value for a piece of music is 1.

12.2 Functions

(number)loadsound((string)filename)

21

Same as the command load sound but auto-generates and returns an identifier.

(number)sound((number)id)

Returns 1 if the sound id exists (has been loaded) or 0 if it doesn't.

(number)loadmusic((string)filename)

Same as the command load music but auto-generates and returns an identifier.

(number)music((number)id)

Returns 1 if the music id exists (has been loaded) or 0 if it doesn't.

13 Functions

13.1 Static definition

function functionName([parameter
1
[, parameter

2
..[, parameter

n
] ..]])

 <statements>

endfunc

Create a static function with the name functionName and an optional list of parameters. Call a
function through its name followed by a list of comma-separated aguments, matching the parameter
list in the function definition, within parentheses. You have to use parentheses even if the function
expects no arguments.

 When you call a function, its statements are executed. When the statements have been executed,
or a return statement is reached (see return), program execution continues from where the function
was called.

 Variables defined inside a function (including the parameters) only exist while the function is
executing. Unless a variable in the main program has been declared as visible or constant (see
Global variables) a function can't see or access it.

' Define a function with one parameter.

function MyFunction(aParameter)

 pln ”The parameter is ” + aParameter

endfunc

' Call MyFunction

MyFunction(”Foobar”)

22

13.2 Anonymous definition

(function)function([parameter
1
[, parameter

2
..[, parameter

n
] ..]])

 <statements>

endfunc

Returns an anonymous function with an optional list of parameters.

' Assign an anonymous function to a variable named foo.

foo = function(aParameter)

 pln ”The parameter is ” + aParameter

endfunc

' Call the function through foo.

foo(”Foobar”)

13.3 return

return [v]

Leave the function and optionally return a value that may be captured by the caller.

' Define a function with two parameters.

function Multiply(x, y)

 ' Return product.

 return x*y

endfunc

' Capture result in a variable named result and print it.

result = Multiply(10, 3)

pln result

' Print the result of another call directly.

pln Multiply(5, 5)

13.4 this

If a function is called through a table field, you can access the table inside the function using this.

' Create a table and add a variable named meaningOfLife to it.

23

foo = []

foo.meaningOfLife = 42

' Add a function named Print.

foo.Print = function()

 ' Use this to access the variable meaningOfLife.

 pln ”The meaning of life is ” + this.meaningOfLife

endfunc

' Call foo's function.

foo.Print()

13.5 Global variables

visible var
1
 [= e

1
][, var

2
 [= e

2
] .. [, var

n
 [= e

n
]] ..]

constant const
1
 = e

1
[, const

2
 = e

2
 .. [, const

n
 = e

n
] ..]

24

14 Key codes
These key codes should be used with the keydown function, since the actual values are platform
dependent:

KEY_TAB

KEY_RETURN

KEY_SHIFT

KEY_CONTROL

KEY_ESCAPE

KEY_SPACE

KEY_PAGE_UP

KEY_PAGE_DOWN

KEY_END

KEY_HOME

KEY_LEFT

KEY_UP

KEY_RIGHT

KEY_DOWN

KEY_INSERT

KEY_DELETE

KEY_0

KEY_1

KEY_2

KEY_3

KEY_4

KEY_5

KEY_6

KEY_7

KEY_8

KEY_9

KEY_A

KEY_B

KEY_C

KEY_D

KEY_E

KEY_F

25

KEY_G

KEY_H

KEY_I

KEY_J

KEY_K

KEY_L

KEY_M

KEY_N

KEY_O

KEY_P

KEY_Q

KEY_R

KEY_S

KEY_T

KEY_U

KEY_V

KEY_W

KEY_X

KEY_Y

KEY_Z

KEY_MULTIPLY

KEY_ADD

KEY_SEPARATOR

KEY_SUBTRACT

KEY_DIVIDE

KEY_F1

KEY_F2

KEY_F3

KEY_F4

KEY_F5

KEY_F6

KEY_F7

KEY_F8

KEY_F9

KEY_F10

26

KEY_F11

KEY_F12

27

	1 Introduction
	2 Program flow
	2.1 if, elseif, else, endif
	2.2 select, case, default, endsel
	2.3 do, loop
	2.4 do, until
	2.5 while, wend
	2.6 for, to, step, next
	2.7 foreach, in, next
	2.8 break

	3 Math
	3.1 Commands
	3.2 Functions

	4 Strings
	4.1 Functions

	5 Tables
	5.1 Commands
	5.2 Functions

	6 Date and time
	6.1 Commands
	6.2 Functions

	7 Files
	7.1 Commands
	7.2 Functions

	8 Window
	8.1 Commands
	8.2 Functions

	9 Images and drawing
	9.1 Commands
	9.2 Functions

	10 Text output, input and fonts
	10.1 Commands
	10.2 Functions

	11 Zones
	11.1 Commands
	11.2 Functions

	12 Audio
	12.1 Commands
	12.2 Functions

	13 Functions
	13.1 Static definition
	13.2 Anonymous definition
	13.3 return
	13.4 this
	13.5 Global variables

	14 Key codes

