
Simple 3D Library

Introduction

The Simple 3D library (s3d) lets you set up a 3D view and render triangles and quadrilaterals. It is a
software renderer, meaning that it doesn't use DirectX or OpenGL – everything is computed on the
CPU (this goes for all drawing in n7). So don't expect high performance, at least not in this first test
version. There are countless optimizations to be made.

Transformations

If you have used turtle graphics you shouldn't have much problems understanding how to position
objects in 3D. And if you've played around with legacy OpenGL you probably don't need to read
this at all.

A position in 3D space is defined by an x, y and z coordinate, (x, y, z). Imagine that you're standing
at the position (0, 0, 0). The x axis points right, the y axis down and the z axis forward (atleast in
s3d). To position something, let's say a box, at position (0, 0, 4) (four ”units” in front of you) and
rotate it 45 degrees around its y-axis, it's easiest to imagine it as if you walk to that position first,
spin around 45 degrees and then put the box down. The walk is called a translation, and the
spinning is called a rotation. In s3d you would use the function call S3D_Translate(0, 0, 4) followed
by S3D_RotateY(rad(45)) to get to the desired position of the box. And if the box was a mesh (3D
model) that you created or loaded, you would then put it down with S3D_Box(myBox, 0) (don't
mind the second parameter for now). There's a third transformation called scaling, with which you
can change the size of an object. If you had wanted to make the box twice as tall you could have
called S3D_Scale(1, 2, 1) before putting it down with S3D_Mesh. Walking can be exhausting. But
instead of rotating 45 degrees in the opposite direction and walk back to position (0, 0, 0) after
putting down the box, you can use the transformation stack to teleport back. If you call S3D_Push()
before S3D_Translate(0, 0, 4), your position and direction will be saved. And when you've put the
box down with S3D_Mesh(myBox, 0) you can call S3D_Pop() to teleport back to where you were.
After teleporting back you can keep walking, spinning and teleporting to place other objects in
space.

Functions

S3D_SetView((number)tagetImage, (number)fov, (number)zMin, (number)zMax)

Set up the rendering view. targetImage is the image you want to render to, in most cases you set it
to primary (the window). fov is the vertical field of view in radians, and zMin and zMax are the near
and far clip planes. Anything rendered at a distance smaller than zMin or greater than zMax will be
clipped or not rendered at all.

S3D_SetDepthBuffer((number)value)

The only type of depth buffer that s3d currently supports is a z buffer. When a z buffer is used, a
depth value is stored for each pixel of the target image. Every time a new pixel is to be rendered, its
distance is compared with the distance stored in the z buffer. The new pixel is only drawn if its
distance (to the camera) is less than what is already stored in the buffer. If it is rendered, the value in
the depth buffer is changed to that of the new pixel. value should be one of these constants:

S3D_NONE Don't use the z buffer at all

S3D_Z_BUFFER (default) Compare depths and only draw and update the z
buffer if the new pixel is closer to the camera

S3D_Z_WRITE Don't compare depths, draw and update the z
buffer no matter what

S3D_Z_READ Compare depths and only draw if the new pixel
is closer, but don't update the z buffer

S3D_ClearDepthBuffer()

Clear the depth buffer, meaning that the depth of each pixel is set to the highest possible distance.

S3D_SetSorting((number)value)

Before rendering a batch of polygons, you can automatically sort them based on their average
distance to the camera. In that case, nothing is actually rendereded until you call S3D_Render.
Some times, depending on the layout of the polygons, you can use this instead of a depth buffer
(N7/examples/libraries/s3d/ex_heightmap.n7 is a good example of this). value should be one of
these constants:

S3D_NONE (default) No sorting, all polygons are rendered directly

S3D_BACK_TO_FRONT Render from highest to lowest distance

S3D_FRONT_TO_BACK Render from lowest to highest distance

S3D_ClearTransformation()

Clear the current transformation (teleport to position (0, 0, 0) and look along the positive z axis,
with the x axis pointing stright to the right and the y axis pointing down).

S3D_Clear()

Clear the current transformation and the depth buffer (and reset the transformation stack, for some
reason).

S3D_Translate((number)x, (number)y, (number)z)

Translate by (x, y, z) relative to the current transformation.

S3D_RotateX((number)a)

Rotate a radians around the x axis relative to the current transformation.

S3D_RotateY((number)a)

Rotate a radians around the y axis relative to the current transformation.

S3D_RotateZ((number)a)

Rotate a radians around the z axis relative to the current transformation.

S3D_Scale((number)x, (number)y, (number)z)

Scale x, y and z coordinates by (x, y, z) relative to the current transformation.

S3D_Push()

Push the current transformation to the stack.

S3D_Pop()

Pop transformation from the stack and make it the current.

S3D_Begin((number)value)

Start defining polygons (or faces) of the type value to be rendered. value should be one of the
following constants:

S3D_TRIANGLES Define triangles, each triangle requires three
calls to S3D_Vertex

S3D_QUADS Define quadrilaterals, each quad requires four
calls to S3D_Vertex

If you haven't called S3D_SetSorting to sort your polygons, a triangle or quad will be rendered
directly after each third or fourth call to S3D_Vertex. If you have enabled sorting, the polygons
won't be rendered until you call S3D_Render.

S3D_End()

Stop rendering polygons of the type specified when calling S3D_Begin. Each S3D_Begin must be
followed by an S3D_End and nesting is not allowed.

S3D_Vertex((number)x, (number)y, (number)z, (number)u, (number)v)

Specify a vertex (position in space), (x, y, z), and texture coordinates, (u, v), for a for a triangle or a
quad. Texture coordinates are always in the range [0..1]. (0, 0) represents the top left corner of an
image, and (1, 1) is the bottom right corner. This makes it easy to use textures of different sizes
without having to change the texture coordinates. If you are not rendering textured polygons, you
can set u and v to 0.

Note that the order in which you add the vertices matter! If a polygon faces away from the camera,
it won't be rendered. Let's say you want to render a square of the size 1x1 centered in the xy plane at
a distance of 3 units and facing the camera. Then you need to add the vertices in clockwise order
(remember that the x axis points right and the y axis down):

S3D_Vertex(-0.5, -0.5, 3, 0, 0)

S3D_Vertex(0.5, -0.5, 3, 1, 0)

S3D_Vertex(0.5, 0.5, 3, 1, 1)

S3D_Vertex(-0.5, 0.5, 3, 0, 1)

Learning to ”see” this can take some time, but hopefully you will get used to it.

S3D_Color((number)r, (number)g, (number)b)

Set the color for all coming polygons to r, g, b. If the polygons are textured, they will be
colorized/tinted (just like regular images when using 'set color' and 'draw image'). Note that drawing
textured polygons that are colorized is quite a bit slowing than drawing non-colorized textured
polygons. Use S3D_Color(255, 255, 255) to disable colorization.

S3D_Texture((number)img)

Set the texture to use for all coming polygons to image img, a normal n7 image id.

S3D_Render()

Sort and render polygons.

S3D_RenderFog((number)r, (number)g, (number)b, (number)retro)

If you have rendered your polygons using a depth buffer, in the mode S3D_Z_BUFFER or
S3D_Z_BUFFER_WRITE, you can apply a fog effect to the scene with this function. It uses the
depth values in the buffer to modify the color of all rendered pixels. If a pixel has the same depth as
the zMax value passed to S3D_SetView, it will be fully replaced by the color (r, g, b), while pixels
closer to the camera will be less affected. If retro is set to true, the fog will have a retro look (sharp,
distinct, levels).

(number)S3D_LoadMesh((string)filename, (number)scaleX, (number)scaleY, (number)scaleZ,
(number)invertFaces)

Currently s3d only supports loading meshes (models) from OBJ files. When it comes to materials, it
uses the diffuse colors (Kd) and textures (map_Kd) from the material file (MTL). Since the
coordinate system of s3d doesn't match (by default) that of OpenGL (I went the JavaFX way), you
may need to apply scaling to the models you load using scaleX, scaleY and scaleZ. Usually scaleY
should be negative. If the faces looks all weird (you see the inside of a mesh rather than its outside)
you should set invertFaces to true (I haven't had to do that for any model yet). You can also use
scaleX, scaleY and scaleZ to resize a model once, rather than calling S3D_Scale everytime you
render it. The function returns an unset variable if the mesh could not be loaded, but most likely it
will cause a runtime error if there's something weird with the file.

I must remind you that s3d uses rather unoptimized software rendering. So the models you load and
use should have really, REALLY, low polygon counts. Look at the first Quake game (not the
remastered version) to understand what I mean! When people today talk about ”low poly” models,
they're like: ”Yeah, this tiny rock I made only has 5,983 polygons! It's so retro!” That rock alone
would break s3d.

(number)S3D_LoadMeshFrame((number)mesh, (string)filename, (number)scaleX,
(number)scaleY, (number)scaleZ)

S3d supports blending of mesh frames for smooth animation, but OBJ files has no support for
frames or animation. As a workaround you can use S3D_LoadMeshFrame to load the vertices of
separate OBJ files and add them as animation key frames to a previously loaded mesh. This, of
course, requires that the OBJ files represent the same object and have exactly the same number of
vertices in the same order. mesh should be an already loaded mesh. I don't know if it's even possible
to output meshes like that in common 3D modelling tools like Blender, but atleast I can do it in a
3D modelling tool I wrote in 2002 :) Next version of s3d will support loading MD2 models (the file
format used in Quake 2), so no need to worry. mesh should be a previously loaded mesh, and the
parameters should correspond to those used when loading that mesh. The function returns true on
success.

S3D_Mesh((number)mesh, (number)frame)

Render the mesh mesh with the current transformation. If the mesh has more than one frame, you
select which frame to render with the frame parameter. It should be set to 0 for the original mesh, 1
for the second frame added and so on.

S3D_BlendMesh((number)mesh, (number)frame0, (number)frame1, (number)blend)

If a mesh has several frames, you can render it by blending the vertices of two frames. The original
mesh has the frame index 0, the second frame added has index 1 and so on. blend should be in the
range [0..1]. If blend is 0, the mesh will be rendered as frame frame0, and if it's 1 it will be rendered
as frame1. If blend is 0.5, the mesh will look 50% like frame0 and 50% like frame1.

(number)S3D_BeginMesh()

Rendering a mesh with S3D_Mesh is a lot faster than using S3D_Begin/S3D_End and defining all
the vertices one by one every frame of your game loop. S3D_Mesh performs optimizations and can
discard polygons at an early stage. You can use S3D_BeginMesh and S3D_EndMesh to ”record” a
mesh that you can then render with S3D_Mesh. S3D_Begin returns the mesh. Inbetween
S3D_BeginMesh and S3D_EndMesh you can use S3D_Begin/S3D_End, S3D_Vertex, S3D_Color
and all the transformation functions. Look at the square from the explanation of the S3D_Vertex
function:

S3D_Vertex(-0.5, -0.5, 3, 0, 0)

S3D_Vertex(0.5, -0.5, 3, 1, 0)

S3D_Vertex(0.5, 0.5, 3, 1, 1)

S3D_Vertex(-0.5, 0.5, 3, 0, 1)

You can record that mesh and render as many instances of it as you like in your game loop. But let's
set the z coordinate to 0, so that we can use S3D_Translate to render it at different locations:

squareMesh = S3D_BeginMesh()

 S3D_Begin(S3D_QUADS)

 S3D_Vertex(-0.5, -0.5, 0, 0, 0)

 S3D_Vertex(0.5, -0.5, 0, 1, 0)

 S3D_Vertex(0.5, 0.5, 0, 1, 1)

 S3D_Vertex(-0.5, 0.5, 0, 0, 1)

 S3D_End()

S3D_EndMesh()

You can even draw other meshes while recording a mesh.

S3D_EndMesh()

Stop recording of mesh started with S3D_Begin.

(number)S3D_CreateMesh((array)vertexList, (array)uvList, (array)materialList, (array)faceList)

This function is used internally by S3D_LoadMesh and shouldn't really be used by sane people. It
lets you create a mesh by supplying arrays with data for vertices, texture coordinates, materials and
faces (polygons). It returns a mesh on success. The parameters are explained here:

vertexList Array of vertex positions: [[x0, y0, z0], [x1, y1, z1], ..] Must not be unset or
empty

uvList Array of texture coordinate pairs: [[u0, v0], [u1, v1], ..] Must not be unset or
empty. Set to [[0, 0]] if
there are no texture
coordinates! Yes, this is
sort of a bug.

materialList Array of materials: [[[r0, g0, b0], texture0], [[r1, g1, b1],
texture1], ..]

May be unset or empty.
An rgb array may be set
to unset, and the same
goes for a texture

faceList A list of faces: [[vertexIndex00, vertexIndex01,
vertexindex02[, vertexIndex03], uvIndex00, uvIndex01,
uvIndex02[, uvIndex03], materialIndex0], [vertexIndex10,
vertexIndex11, vertexindex12[, vertexIndex13], uvIndex10,
uvIndex11, uvIndex12[, uvIndex13], materialIndex1], ..]

vertexIndex refers to an
index in vertexList,
uvIndex to uvList and
materialIndex to
materialList. Triangles
require 3 vertex and uv
indexes and a quad 4.
materialindex should be
set to unset if no
material is used.
uvIndex may not be
unset

S3D_AddMeshFrame((number)mesh, (array)vertexList)

This function is used internally by S3D_LoadMeshFrame. It adds a frame to the mesh mesh.
VertexList must contain the same number of vertices as in the original mesh, and it must have the
same format as the vertexList parameter of S3D_CreateMesh.

S3D_TransformVector((array)dst, (array)src)

Multiplies the vector src, [x, y, z[, w = 1], with the current transformation matrix and writes the
resulting vector to dst.

(number)S3D_ProjectVector((array)dst, (array)src)

Tries to transform and project the vector src, [x, y, z[, w = 1], using the current transformation and

projection matrices and writes the resulting vector to dst on success. The function will fail and
return false if the transformed z coordinate is less than the near clipping plane. On success the x and
y coordinates of dst will be in screen coordinates (they may, however, be < 0 or >= the width of the
target image). I guess this function can be used for visibility tests.

(number)S3D_ProjectFace((array)dst, (array)src)

Tries to project the polygon src using the current transformation and projection matrices and writes
the resulting polygon to dst on success. The function returns the number of vertices in the resulting
polygon. If it returns 0, the transformed z coordinates of all vertices were less than the near clipping
plane. On success, ther number of vertices in dst may be more or less than those in src due to
clipping against the near clipping plane. The format av src should be: [x0, y0, z0, x1, y1, z1, …],
and the number of points should be either 3 or 4. On success the x and y coordinates of dst will be
in screen coordinates (they may, however, be < 0 or >= the width of the target image). As with
S3D_ProjectVector, this is probably just good for visibility tests (maybe it can be used to determine
the visibility of sections in a portal based game – that's why I added it).

	Simple 3D Library
	Introduction
	Transformations
	Functions

