
EngineA
Enginea (EA) is a sector (room) based 3D game engine. A level/map is a bunch of sectors (rooms)
connected by portals (openings, doorways). By calculating the visibility of the portals in the sector
that the player (camera) is located it's quite easy to determine which sectors need to be rendered. If
the doorway to a room is not visible, that room needn't be rendered. And if the doorway is visible,
the rendering can be clipped to the bounding rectangle of the doorway. In short, sectors and portals
are used to speed up rendering in a game, which is quite crucial for an engine written entirely in an
interpreted and pretty slow programming language.

This document only lists and describes the functions available in the enginea library (enginea.n7). If
you want to know how the map editor (enginea_editor.exe) works and learn the basics of how to
make a game using enginea, I strongly suggest that you look at the enginea_tutorial.pdf document
and the examples in the folder examples/enginea_library (the tutorial referes to those examples).

Angles are always specified in radians, if I have forgotten to write it out somewhere.

Setup and initialization

EA_SetView((number)target, (number)fov, (number)z_min, (number)z_max)

Set destination image for rendering to target (usually primary), the field of view to fov and the near
and far clip planes to z_min and z_max.

EA_SetFog((number)mode, (number)r, (number)g, (number)b)

Enable fog by setting mode to EA_NORMAL or EA_RETRO, or disable it by setting mode to
EA_NONE. Fog is disabled by default. Set the color of the fog to the RGB values r, g and b. The
different between the modes EA_NORMAL and EA_RETRO is that EA_RETRO renders just a few,
very distinct, levels of fog, making the game look a bit more retro. The z_max parameter passed to
EA_SetView determines at what distance the fog fully hides the environment.

EA_SetDoorMode((number)mode)

Doors between portals can open/close in three different ways. These are the different constants you
can use as mode parameter:

EA_SLIDE_UP doors move up into the ceiling (default)

EA_SLIDE_DOWN doors move down into the floor

EA_SLIDE_SIDE doors move to the side into the wall

EA_SetDoorSpeed((number)speed)

Set the speed at which doors open/close to speed. The default speed is 2.5, meaning that it takes
1/2.5 = 0.4s for a door to open/close. A high value, such as 2.5, is recommended, since nothing can
pass through a door unless it's fully open.

EA_SetFpsCap((number)fps)

Enable fps capping by calling this function with an fps parameter greater than 0, disable fps capping
by setting fps to 0 (default). It may be a good idea to limit the fps of your game to 60 or so, for I
have noticed that relative mouse input (standard in first person shooters) doesn't work that well
when your game never sleeps. When you enable fps capping, the engine will call the regular fwait
command to sleep after each update and render cycle.

EA_SetDebugOutput((number)value)

If you call this function with true as parameter, some debug information will be displayed. This is
something that I often use. Most of the information probably just make sense to me, but atleast
you'll see the number of frames per seconds that your game runs at. Debug output is disabled by
default.

Maps

You have to load maps created with the enginea editor, there's no way to build a level from scratch
through code.

(array)EA_LoadMap(filename)

Load a map from file filename created with the enginea editor. The function returns an array
containing all the flags that you have added to the map in the editor. Each flag in the array is a table
with the following fields:

(string)flag entered flag

(string)value entered value

(number)x x coordinate

(number)z z coordinate

(number)floorY floor y coordinate at (x, z) or unset if (x, z) is not inside a sector

(number)ceilingY ceiling y coordinate at (x, z) or unset if (x, z) is not inside a sector

If the function encounters an error, a runtime error message will be displayed explaining what went
wrong.

EA_FreeMap()

Free all data for the current map. This function is called by EA_LoadMap before a map is loaded, so
most likely you'll never need to use it.

Callbacks and the game loop

When you've set everything up, loaded a map, created a camera etc, you will call EA_Run to enter
the game loop. EA_Run won't return until you call EA_Stop. You can manage your game logic using
a general callback function that executes once every frame of your game. Game objects, such as the
player and any other objects that you create, have their own callback functions.

EA_SetUpdateAction((function)func)

Set the update callback function to func. It will be called once every frame. The function should
take one parameter, which is the number of seconds that have passed since last time the function
was called (it will actually just be a fraction of a second, like 0.167 if your game runs at 60 fps).
Example:

function MyUpdateFunc(dt)

 if keydown(KEY_ESCAPE) EA_Stop()

endfunc

EA_SetUpdateAction(MyUpdateFunc)

EA_SetDrawAction((function)func)

Set the draw callback function to func. It will be called every frame when the engine has rendered
the 3D scene but before redraw is called. You use this function to display any information you want,
such as the player's score and health. You can even render some 3D graphics, such as a gun held by
the player, using the S3D library. Example:

function MyDrawFunc()

 set color 255, 255, 255

 set caret 0, 0

 wln ”Hello world!”

endfunc

EA_SetDrawAction(MyDrawFunc)

EA_Run()

Enter the game loop. This function won't return until EA_Stop is called.

EA_Stop()

Exit the game loop.

EA_Pause()

Pause the engine. If you need to pause the game and manage logic and rendering yourself for a
while, you must call EA_Pause. And when you're done, you must call EA_Resume. Maybe you
want to display a settings menu or something. Example:

function MyUpdateFunc(dt)

 if keydown(KEY_ESCAPE, true)

 EA_Pause()

 set color 0, 0, 0, 128

 cls

 set color 255, 255, 255

 set caret width(primary)/2, height(primary)/2

 center ”Game paused ...”

 redraw

 while not keydown(KEY_ESCAPE, true)

 fwait 60

 wend

 EA_Resume()

 endif

endfunc

The reason you need to call EA_Pause and EA_Resume is that the engine needs to pause timers etc.

EA_Resume()

Resume after a call to EA_Pause.

Camera and player object

A runtime error will occur if you try to enter the game loop with EA_Run without having called
EA_SetCamera with a game object, derived from EA_Object, as parameter. When an object is set to
be the camera with EA_SetCamera, its position and direction will be used when rendering the
world. For a first person shooter game, which is what this library is meant for, its a good idea to set
the player object as camera.

EA_SetCamera((table)obj)

Let the object obj act as camera.

You can design your player object (and camera) from scratch by extending EA_Object. But you can
also use EA_FpsPlayer, that returns a very handy object.

(table)EA_FpsPlayer()

Return an object that can be used as a player object and camera in a first person shooter game. By
default it's configured with standard first person shooter controls. You look around using your
mouse, move forward with the W key, backward with S, strafe left and right with A and D and jump
with the space bar. It extends an object returned by EA_Object and therefor contains all the
functions of such an object (EA_Object is explained next). These are the functions that
EA_FpsPlayer adds:

SetForwardKey((number)key_code)

Set the key used for moving forward to key_code (default is KEY_W).

(number)ForwardKey()

Return the key used for moving forward.

SetBackwardKey((number)key_code)

Set the key used for moving backward to key_code (default is KEY_S).

(number)BackwardKey()

Return the key used for moving backward.

SetStrafeLeftKey((number)key_code)

Set the key used for strafing left to key_code (default is KEY_A).

(number)StrafeLeftKey()

Return the key used for strafing left.

SetStrafeRightKey((number)key_code)

Set the key used for strafing right to key_code (default is KEY_D).

(number)StrafeRightKey()

Return the key used for strafing right.

SetStrafeKey((number)key_code)

Set the key to press, while using the rotate keys, to strafe instead of rotate to key_code
(defaults to unset). This may be useful when the mouse isn't used for looking around.

(number)StrafeKey()

Return the key used for strafing instead of rotating.

SetRotateLeftKey((number)key_code)

Set the key used for rotating left to key_code (default is unset).

(number)RotateLeftKey()

Return the key used for rotating left.

SetRotateRightKey((number)key_code)

Set the key used for rotating right to key_code (default is unset).

(number)RotateRightKey()

Return the key used for rotating right.

SetJumpKey((number)key_code)

Set the key used for jumping to key_code (default is KEY_SPACE).

(number)JumpKey()

Return the key used for jumping.

SetMouseSens((number)value)

Set the mouse sensitivity to value (default is 1). You will probably need to let your players

change this value, because it is dependant of the screen resolution and the player's system
settings. Set value to unset to disable mouse controls.

(number)MouseSens()

Return the mouse sensitivity.

SetMoveSpeed((number)speed)

Set the movement speed to speed, measured in units per second (default is 1).

(number)MoveSpeed()

Return the movement speed.

SetRotateSpeed((number)speed)

Set the rotation speed to speed, measured in radians per second (default is PI/2).

(number)RotateSpeed()

Return the rotation speed.

SetUsePitch((number)value)

Enable or disable pitch changes when using mouse controls. If you set value to false, the
player can only rotate left and right using the mouse (default is true).

(number)UsePitch()

Return true if pitch changes are enabled when using mouse controls.

SetMaxPitch((number)angle)

Set the maximum absolute pitch to angle radians (default is 0.35*PI).

(number)MaxPitch()

Return the maximum absolute pitch angle.

SetLeap((number)leap_height)

Set the maximum height that the player can traverse without jumping to leap_height (default
is 0).

(number)Leap()

Return the maximum height that the player can traverse without jumping.

SetJumpForce((number)force)

Set the player's initial vertical speed to force, measured in units per second, when using the
jump key to jump (default is 5). Gravity affects the speed by 5 units per second.

(number)JumpForce()

Return the players initial vertical speed when jumping using the jump key.

Jump((number)force)

Make the player jump using force as the initial vertical speed.

(number)Walking()

Return true if the player is moving.

(number)OnGround()

Return true if the player is on ground.

After creating an EA_FpsPlayer object you must, as with all objects, add it to the engine using
EA_AddObject. And if you want it to act as camera, also pass it to EA_SetCamera.

Note that you can add your own logic and more controls by implementing an Update function for
the object returned by EA_FpsPlayer. The function will be called once per frame, and it comes with
the time passed in seconds since the last call as only parameter, example:

player = EA_FpsPlayer()

player.maySpaceJump = false

EA_AddObject(player)

EA_SetCamera(player)

player.Update = function(dt)

 if this.OnGround()

 this.maySpaceJump = true

 else

 if this.maySpaceJump

 if keydown(this.JumpKey(), true)

 this.maySpaceJump = false

 this.Jump(this.JumpForce())

 endif

 endif

 endif

endfunc

Objects

Objects are used for all visual things in the 3D world except for the walls, floors and ceilings that
you create with the editor. Most likely you will use the flags added to a map in the editor for the
positioning and setup of your game objects. An object can be a sprite or a mesh/model, but it can
also be invisible like the player/camera returned by EA_FpsPlayer.

There are two different types of objects. Static objects, created with EA_StaticObject, can't be
moved once the game loop has started. Regular objects, created with EA_Object, on the other hand,
may move. Static objects can have collision properties and act as walls or floors. For example, you
can create a barrel, as a sprite or a mesh, that the player can bump into and stand on using a static
object.

An object has a position in the 3D world, (x, y, z). Used or not, it also has a direction, (dx dy dz)
which is based on a yaw and a pitch angle. Yaw is rotation around the y axis (as when you look left
and right, spin around), and pitch is rotation around the x axis, applied after the yaw rotation (as
when you look up and down). By default, when both yaw and pitch are 0, an object's direction is (0
0 1), meaning that it is looking, or pointed, along the positive z axis.

An object also has a height and radius. The cylinder formed by these properties are used for
collision handling when the functions Move and CollidesWith (both explained below) are used. The
height and radius also controls the size of sprites.

EA_AddObject((table)obj)

Add the object obj to the world.

EA_AddStaticObject((table)obj)

Add the static object obj to the world.

EA_RemoveObject((table)obj)

Remove the object obj from the world (this function works for all objects).

(table)EA_Object()

Return a new game object. It contains the following functions:

SetPos((number)x, (number)y, (number)z)

Set the position to (x, y, z), where y is the bottom coordinate of the object. In general, you
should only call SetPos during initialization. If you wish to move an object with collision
handling, use Move (described later).

(number)X()

Return the x coordinate.

(number)Y()

Return the y coordinate.

(number)Z()

Return the z coordinate.

(array)Pos()

Return the position as an array, [x, y, z]. You should not alter this array.

SetYaw((number)angle)

Set yaw to angle radians.

(number)Yaw()

Return yaw.

SetPitch((number)angle)

Set pitch to angle radians.

(number)Pitch()

Return pitch.

(number)DX()

Return the x component of the direction, based on the yaw and pitch angles.

(number)DY()

Return the y component of the direction, based on the yaw and pitch angles.

(number)DZ()

Return the z component of the direction, based on the yaw and pitch angles.

(array)Dir()

Return the direction as an array, [dx, dy, dz]. You should not alter this array.

SetHeight((number)h)

Set the height to h units.

(number)Height()

Return the height.

SetRadius((number)r)

Set the radius to r units.

(number)Radius()

Return the radius.

SetEye((number)h)

Set the distance between the object's y coordinate (bottom) and its eyes to h. This is used by
the function Facing for determening what the object is looking at. It is also used when the
object is set to be the camera with EA_SetCamera.

(number)Eye()

Return the distance between the object's y coordinate and its eyes.

SetSprite((number)img, (number)cel, (number)only_yaw)

Use the image img and the cel cel (always 0 if no grid has been setup for the image) when
rendering the object, making it a sprite. If only_yaw is false, the sprite will always face the
camera completely and appear as a rectangle aligned with the x and y axes of the window. But
if only_yaw is true, the sprite will only be rotated around the y axis to face the camera. The
visual rotation described here has got nothing to do with the object's direction (yaw and
pitch). The sprite's width and height are determined by the height and radius of the object; the
width is twice as large as the radius.

(number)Sprite()

Return the sprite image.

SetCel((number)cel)

Set the sprite image cel to cel.

(number)Cel()

Return sprite image cel.

SetMesh((number)mesh)

Use the mesh mesh, loaded using the S3D library, when rendering the object. The mesh will
be rotated using the object's yaw and pitch. The visual size of the mesh is not affected by the
object's height and radius. The scale of the mesh can be set when you load it with
S3D_LoadMesh.

(number)Mesh()

Return the mesh.

SetFrame((number)frame)

Set mesh frame to frame (if the mesh has more than one, that is).

SetFrames((number)frame_1, (number)frame_2, (number)blend)

Blend the two mesh frames frame_1 and frame_2 when rendering the object. The blend value
should be in the range [0..1]. When blend is 0 the mesh is rendered as frame_1, and when it's
1 the mesh is rendered as frame_2.

(number)Frame()

Return the mesh frame (or the first frame when using SetFrames).

(number)Frame2()

Return the second mesh frame, when using SetFrames.

(number)Blend()

Return blend value, when using SetFrames.

SetCollisionMode((number)mode)

When moving an object with Move (below) you can use normal or fast collision handling. For
a camera/player, you should probably use normal. But for enemies, bullets and such you can
use the fast version. Set mode to EA_NORMAL for normal collision handling or EA_FAST for
fast.

(table)Move((number)dx, (number)dy, (number)dz, (number)leap)

Try to add the vector (dx dy dz) to the object's current position with collision handling applied.
If the object isn't some sort of air born thingy (such as a flying enemy or a bullet) you can set
leap to some height that the object is allowed to traverse without jumping.

The function returns a table with lots of information about the result of the movement. It
contains the following fields:

(number)w true on collision with a wall

(number)g true on collision with the ground

(number)c true on collision with the ceiling

(number)any true if any of the above are true

(number)dx x component of the normal of the wall that was hit

(number)dz z component of the normal of the wall that was hit

(number)dy -1 on collision with the floor or -1 on collision with the ceiling

(table)info information about the wall that was hit (unset if w is false). This is the

same data that is returned by Facing (explained below).

(table)Facing()

Return information about the closest wall that the object is facing. The function returns an
unset variable if the object is facing a floor or ceiling rather than a wall. If the object is facing
a wall, a table with the following fields is returned:

(number)dist distance to the wall

(number)type EA_WALL, EA_DOOR or EA_OBJECT for a wall, door or

static object

(number/table)data a texture index from the editor if type is EA_WALL, a door

object if type is EA_DOOR or a static object if type is

EA_OBJECT

As stated, if the type field is EA_DOOR, a door object is returned. Since calling Facing or
Move is the only way to get in contact with a door object, the door object's functions are
listed here:

(number)GetTexture()

Return the texture index, set in the editor.

SetTexture(index)

Set new texture index to index.

(number)X()

Return the center x coordinate.

(number)Y()

Return the center y coordinate.

(number)Z()

Return the center z coordinate

(number)Open()

Open the door, return true if door is not already open or opening.

(number)Close()

Close the door, return true if the door isn't already closed or closing

(table)Sector()

Return the sector that the object is currently in. The returned table is not to be messed with,
but you may use it to tell if two objects are in the same sector.

(array)SectorObjects()

Return an array with all the objects that are in the same sector as this object (included in the
list). Do not attempt to modify the array itself!

(number)Visible((table)obj)

Return true if there is no obstacle between the center point of this object and the object obj.

(number)CollidesWith((table)obj)

Return true if this object overlaps the object obj, comparing the objects' bounding cylinders.

(number)DistanceTo((table)obj)

Return the distance between this object and the object obj.

(number)SqrDistanceTo((table)obj)

Return the square distance between this object and the object obj.

PlaySound((number)snd, (number)vol)

Play the sound effect snd at the object's position with the volume vol. This function calls
EA_PlaySound (explained later) with the object's coordinates as parameters.

You can assign the following functions to any object returned by EA_Object, EA_StaticObject or
EA_FpsPlayer:

Update((number)dt)

After EA_Run has been called, this function is called once per frame. The dt parameter is the
time in seconds that has passed since the last time the function was called.

Run()

Called once after EA_Run has been called.

Stop()

Called once after EA_Stop has been called, right before EA_Run returns.

Pause()

Called once every time EA_Pause is called.

Resume()

Called once every time EA_Resume is called.

Render()

Called during rendering if you want to draw the object yourself using S3D.

Usually, the only function you need to implement is Update, but in some cases you won't even need
that one.

Static objects

Static objects are not allowed to move once added to the world with EA_AddStaticObject. But static
objects may optionally have collision properties so that they act as walls and ground. An object
returned by EA_StaticObject contains all the functions of an object returned by EA_Object except
Move and SetCollisionMode. And it contains this extra function:

SetColPoly((array)p)

Create invisible walls around the objects based on the polygon p, an array in the format [x0, z0, x1, z1

.. xn, zn]. The walls will have the same height as the the object, set with SetHeight. An invisible
ground, in the shape of the polygon, is added on top of the object (so that regular objects can stand
on it) unless the height is unset (only possible when using meshes). The coordinates in the array p
are relative to the objects center in the xz plane. The polygon is always closed, so you should not
make the first and last vertices equal.

Other functions

EA_PlaySound((number)snd, (number)vol, (number)x, (number)y, (number)z)

Play the sound effect snd with volume vol at the position (x, y, z). A stereo and volume drop-off
effect is applied for a ”3D effect”. At a distance from the camera equal to or greater than what has
been specified with EA_SetSoundMaxDist the sound will not be played at all.

EA_SetSoundMaxDist((number)d)

Set the maximum distance at which a sound can be heard, when played using EA_PlaySound or the
game object function PlaySound, to d. The default value is 8.

EA_Sectors()

Return an array containing all sectors. A sector object contains lots of lots of stuff that shouldn't be
messed with, but here are some functions that you can use:

Name()

Return name set in the editor.

SetName(name)

Set name to name.

Objects()

Return an array containing all objects currently in the sector.

Doors()

Return an array containing all doors connected to the sector.

	EngineA
	Setup and initialization
	Maps
	Callbacks and the game loop
	Camera and player object
	Objects
	Static objects
	Other functions

